3GPP TR 33.cde835 V0.2.0 (2018-0911)
2
Release 16

[bookmark: page1]3GPP TR 33.cde835 V0.2.0 (2018-0911)
Technical Report
3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;
Study on authentication and key management for applications;
based on 3GPP credential in 5G
(Release 16)
	
	
 [image: 5G-logo_175px]	[image: 3GPP-logo_web]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[bookmark: page2]
Keywords
<keyword[, keyword]>
MCC selects keywords from stock list.

3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents
Foreword	5
Introduction	5
1	Scope	6
2	References	6
3	Definitions and abbreviations	6
3.1	Definitions	6
3.3	Abbreviations	7
4	Scenario	7
4.1 Scenario #1: <Scenario name>	7
5	Key Issues	7
5.2	Key Issue #2: Transport independent procedure definition	9
5.2.1 Issue details	9
5.2.2 Security Threats	10
5.2.3 Potential architecture requirements	10
5.3	Key Issue #X: Mutual authentication between UE and anchor function	10
5.3.2 Security Threats	10
5.3.3 Potential security requirements	10
5.5	Key Issue #5: User privacy	11
5.5.1 Issue details	11
5.5.2 Security Threats	11
5.5.3 Potential security requirements	11
5.6 Key Issue #6: secure communication between UE and application server	11
5.6.1 Issue details	11
5.6.2 Security threats	11
5.6.3 Potential security requirements	12
5.11	Key Issue #11: Generic battery efficient end-to-end security	13
5.11.1	Issue details	13
5.11.2	Security threats	13
5.11.3	Potential security requirements	13
5.12	Key Issue #12: Key lifetimes	13
5.12.1 Issue details	13
6 Candidate Solutions	15
6.1 Solution #1: Introducing third party key to AKMA	15
6.1.1 Introduction	15
6.1.2 Solution details	15
6.2	Solution #2: Access independent architecture solution for AKMA	17
6.2.1	Introduction	17
6.2.2	Solution details	17
6.2.2.1	Architecture and reference points	17
6.2.2.2	Procedures	17
6.2.2.2.1	Initiation	17
6.2.2.2.2	Authentication	18
6.2.2.2.3	Usage	18
6.2.3	Evaluation	19
6.3	Solution #3: Architecture solution for AKMA with standalone anchor	19
6.3.1	Introduction	19
6.3.2	Solution details	19
6.3.2.1	Architecture and reference points	19
6.3.2.2	Procedures	20
6.3.2.2.1	Initiation	20
6.3.2.2.2	Authentication	20
6.3.2.2.3	Usage	21
6.3.3	Evaluation	21
6.4	Solution #4: Bootstrapping authentication of AKMA	21
6.4.2 Security details	22
6.4.2.1 Authentication procedure for 5G AKA	22
6.4.2.2 Authentication procedure for EAP-AKA'	23
6.4.3 Evaluation	25
6.5 Solution #5: Transport independent procedure using existing protocols by applying OneM2M protocol binding mechanism	25
6.5.1 Introduction	25
6.5.2 Solution details	25
6.5.3 Evaluation	26
6.6 Solution #6: Transport independent procedure using existing protocols by introducing a protocol transfer gateway	26
6.6.1 Introduction	26
6.6.2 Solution details	26
6.6.3 Evaluation	27
6.7 Solution #7: UE implementation scheme- AKMA framework and application on modem	27
6.7.1 Introduction	27
6.7.2 Solution details	27
6.7.3 Evaluation	28
6.8 Solution #8: UE implementation scheme- AKMA framework on UICC and application on modem	28
6.8.1 Introduction	28
6.8.2 Solution details	28
6.8.3 Evaluation	28
6.9 Solution #9: UE implementation scheme- Application Processor (AP) scheme with AKMA framework on modem	28
6.9.1 Introduction	28
6.9.2 Solution details	29
6.9.3 Evaluation	29
6.10 Solution #10: UE implementation scheme- Application Processor (AP) scheme with AKMA framework on UICC	29
6.10.1 Introduction	29
6.10.2 Solution details	29
6.10.3 Evaluation	30
6.11 Solution #11: UE implementation scheme- AKMA framework implemented on Secure Element (SE)	30
6.11.1 Introduction	30
6.11.2 Solution details	30
6.11.3 Evaluation	30
6.12 Solution #12: UE implementation scheme- AKMA framework implemented on application processor’s OS	30
6.12.1 Introduction	30
6.12.2 Solution details	30
6.12.3 Evaluation	31
6.X Solution <X>: <Solution Name>	31
6.x.1 Introduction	31
6.x.2 Solution details	31
6.x.3 Evaluation	31
7. Evaluation and conclusion	31
Annex <A>: <Annex title>	32
A.1	<Subtitle>	32
Annex <X>: Change history	33
Foreword	4
Introduction	4
1	Scope	5
2	References	5
3	Definitions and abbreviations	5
3.1	Definitions	5
3.3	Abbreviations	5
4	Scenario	6
4.1 Scenario #1: <Scenario name>	6
5	Key Issues	6
5.2	Key Issue #2: Transport independent procedure definition	7
5.2.1 Issue details	7
5.2.2 Security Threats	8
5.2.3 Potential architecture requirements	8
5.3	Key Issue #X: Mutual authentication between UE and anchor function	8
5.3.1 Key Issue details	8
5.3.2 Security Threats	8
5.3.3 Potential security requirements	9
5.5	Key Issue #5: User privacy	9
5.5.1 Issue details	9
5.5.2 Security Threats	9
5.5.3 Potential security requirements	10
5.6 Key Issue #6: secure communication between UE and application server	10
5.6.1 Issue details	10
5.6.2 Security threats	10
5.6.3 Potential security requirements	10
6 Candidate Solutions	11
6.1 Solution #1: Introducing third party key to AKMA 	11
6.1.1 Introduction	11
6.1.2 Solution details	11
6.X Solution <X>: <Solution Name>	13
6.x.1 Introduction	13
6.x.2 Solution details	13
6.x.3 Evaluation	13
7. Evaluation and conclusion	13
Annex <A>: <Annex title>	14
A.1	<Subtitle>	14
Annex <X>: Change history	15

[bookmark: _Toc515001695][bookmark: _Toc515009872][bookmark: _Toc530180900]
Foreword
This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
[bookmark: _Toc515001696][bookmark: _Toc515009873][bookmark: _Toc530180901]Introduction
This clause is optional. If it exists, it is always the second unnumbered clause.
[bookmark: _Toc515001697][bookmark: _Toc515009874][bookmark: _Toc530180902]
1	Scope
The present document specifies key issues, derived requirements and potential solutions to support authentication and key management aspects for applications and 3GPP services based on 3GPP credentials in 5G, including the IoT use case. It analyzes issues and requirements for:
-	providing authentication and key management procedures to applications and 3GPP services in 5G scenarios which allow the UE to securely exchange data with an application server
-	decoupling these procedures from the the transport protocol, in order to allow for the adaption to differernt application layer protocols
The document takes into account new solutions as well as potential adaptations to existing ones such as GBA described in TS33.220 and BEST described in TS33.163, in order to support the above mentioned requirements with procedures and protocols defined in SBA.

[bookmark: _Toc515001698][bookmark: _Toc515009875][bookmark: _Toc530180903]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".
[3]	3GPP TS 33.163: "Battery Efficient Security for very low Throughput Machine Type Communication (MTC) device (BEST)".
[4]	IETF RFC 3748, Extensible Authentication Protocol (EAP)
[5]	3GPP TS 33.905:” Recommendations for trusted open platforms”
[6]	"ISO/IEC JTC 1/SC 17 Cards and security devices for personal identification".….
[7]	3GPP TS 27.007: "AT command set for User Equipment (UE) V15.3.0".
 [x]	<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".
[bookmark: _Toc515001699][bookmark: _Toc515009876][bookmark: _Toc530180904]3	Definitions and abbreviations
[bookmark: _Toc515001700][bookmark: _Toc515009877][bookmark: _Toc530180905]3.1	Definitions
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK5]For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc515001702][bookmark: _Toc515009879][bookmark: _Toc530180906]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
<ACRONYM>	<Explanation>
5GS	5G System
5GC	5G Core
AKA	Authentication and Key Agreement
AKMA	Authentication and Key Management for Applications
AKMA AF	AKMA Application Function
EPS	Evolved Packet System
GBA	Generic Bootstrapping Architecture
GAA	Generic Authentication Architecture
NAF	Network Application Function
SBA	Service Based Architecture

[bookmark: _Toc515001703][bookmark: _Toc515009880][bookmark: _Toc530180907]4	Scenario
[bookmark: _Toc515001704][bookmark: _Toc515009881][bookmark: _Toc530180908]4.1 Scenario #1: <Scenario name>

[bookmark: _Toc515001705][bookmark: _Toc515009882][bookmark: _Toc530180909]5	Key Issues
[bookmark: _Toc515001706][bookmark: _Toc515009883]5.1	Key Issue #1: Security Anchor
[bookmark: _Toc513829552]5.1.1 Issue detail
The GBA/GAA features specified in TS 33.220 [2] leverage the EPS/UMTS authentication infrastructure (especially the HSS) to provide the security between the UE and an application function in the network with which the UE interacts on the User Plane. It should be noted that GBA uses UMTS AKA and that the HSS provides the CK/IK to the BSF instead of Kasme.
Figure 5.1.1-1 below shows the architecture of the features. GBA allows mutual authentication and the establishment of shared keys between the UE and BSF over the Ub interface. GAA, on the other hand, enables using such shared keys for protecting the access to a NAF. In principle GBA keys can be used to secure any protocol between a UE and a NAF over the Ua interface.

Figure 5.1.1-1: GBA and GAA reference architecture from TS 33.2020 [2]
Since the AKMA feature is intended to leverage the 5GS authentication infrastructure to provide similar services, it is understood that GBA/GAA would be one of the starting points for the architectural design of AKMA. However, due to differences between the 5GS and EPS/UMTS there is no direct equivalent of the BSF and HSS in the 5GC. These differences include, but are not limited to, the following:
-	The subscription data including the AKA credentials are stored in the UDM. However, it is another function, the AUSF, that is directly involved in the Primary Authentication procedure towards the serving PLMN.
-	The Primary Authentication procedure establishes a shared key (KAUSF) between the UE and the AUSF while no such key exits in the EPS key hierarchy.
-	The Primary Authentication is terminated in the AUSF by comparison to EPS where it is terminated in the MME.
-	All the internal interfaces in the 5GC are SBA-based by comparison to the DIAMETER-based Zh and Zn interfaces in GBA.
As shown in Figure 2, the AKMA architecture will naturally include an AKMA Application Function with which the UE communicates over the User Plane. The AKMA AF interacts with an anchor function, the BSF-equivalent, in the 5G Core. It is only logical to assume that such an anchor function is needed to authenticate the UE and potentially to provide key management services towards the AKMA AF.

Figure 5.1.1-2: Role of the anchor function in the AKMA architecture
Editor’s Note: Figure for non-standalone scenario is FFS.
Therefore, solutions to this key issue must address the following aspects.
-	How the anchor function is realized.
-	The interfaces involving the anchor function, the UE, the AKMA AF and other 5GS functions.
-	The procedures flow for the UE authentication and the management of the resulting bootstrapped keys used to secure the communication between the UE and the AKMA AF.
[bookmark: _Toc513829553]5.1.2 Security Threat
[bookmark: _Toc513829554]Not applicable.
5.1.3 Potential architectural requirement
The AKMA architecture shall support an anchor function in the 5GC for UE authentication. This function can be realized by a standalone or an existing function.
[bookmark: _Toc530180910]5.2	Key Issue #2: Transport independent procedure definition
[bookmark: _Toc530180911]5.2.1 Issue details
In AKMA, application server needs to be able to securely exchange data with a UE based on the result of authentication and key derivation between mobile network and UE.
In AKMA, there are three different communication interfaces, namely, (1)the communication between UE and 3GPP network, (2) between UE and application server, and (3) between 3GPP network and application server. It is necessary to design the appropriate procedures Considering the stage-3 work, the protocol used for AKMA procedure can be divided into two categories:
1. Using an existing transport protocol
The existing protocols for carrying parameters and transferring data refer to the protocols well designed and widely used by 3GPP, IETF and/or other standard organizations, e.g. PDCP layer protocol, TCP/IP, etc. Using such protocols can bring benefit for the procedure design, as the work can concentrated on the signaling/message flows. There will not be a need to pay much attention on considering how to design message type, format, and any other details as they are well defined in the protocols.
However, using existed protocol may bring some issue. If the communication is through specific application layer protocol, it will bring requirement for transport layer protocol. For example, if the communication is based on HTTP, then TCP shall be applied between UE and mobile network.
However, for some kinds of UEs, especially UE used for IoT, the resource is limited. It will influence UE can only implement few protocols due to its memory and calculation limitation. If application server communicates with UE by using specific application protocol, it implies that UE may could not implement other protocols. It raises the requirement for the communication between UE and mobile network. If the communication is based on specific protocol, some kinds of UE that could not implement such protocol is not able to support AKMA feature. That may limit AKMA usage.
2. Designing specific protocol for AKMA
Compared to using existed protocol, designing a specific protocol for AKMA allows for as much freedom as possible to design protocol types, formats and content. So specific protocol can be designed more flexible to fit for various lower layer protocols.
However, designing such specific protocol is generally difficult and it is debatable whether the protocol will be sufficiently robust. What is more, as it is newly defined, there will not be existing implementations. If only a custom designed protocol will be used, adoption of AKMA may be hampered by the lack of these implementations and competition of existing protocols. Depending on the use case, therefore, it should be considered to reuse existing protocols and only design new ones if existing protocols do not meet the specific requirements of AKMA.
[bookmark: _Toc530180912]5.2.2 Security Threats
N/A
[bookmark: _Toc530180913]5.2.3 Potential architecture requirements

[bookmark: _Toc530180914]5.3	Key Issue #X: Mutual authentication between UE and anchor function
5.3.1 Key Issue detailsTo allow UEs securely communicating and exchanging data with an application server using the authentication and key management procedures for applications in 5G scenarios, it is expected that the AKMA framework would be leveraged. Therefore, in order to establish secure communication between the UE and the application server, the UE and the anchor function need to be able to mutually authenticate each other based on the 5G authentication framework first before allowing the application server to leverage this authentication in order to establish secure communication between the UE and the application server.
[bookmark: _Toc530180915]5.3.2 Security Threats
Without authentication in the UE, an illegal UE may communicate with the anchor function and access AKMA services.
A fake anchor function may communicate with the UE that could potentially lead to the loss and exposure of user privacy.
[bookmark: _Toc530180916]5.3.3 Potential security requirements
The UE and the anchor function shall be able to mutually authenticate each other based on 5G credentials using the 5G authentication framework.
5.4	Key Issue #4: Authentication framework
5.4.1	Issue details
The 5GS AKMA framework needs an authentication framework so that only legitimate UEs can use the AKMA services. For example, it needs to be studied whether the AKMA authentication framework can leverage the fact that the primary authentication in the 5GS produces a key called the KAUSF at the AUSF in the HPLMN and the UE. The primary authentication meaning the one used to allow 5GS access to that UE. If that KAUSF could be the root key for the AKMA authentication framework, there would be no need for yet another authentication and therefore beneficial for IoT devices both signalling and processing wise. Recall that - in GBA/GAA architecture, the UE authentication (called boostrapping) was separate and additional authentication than the primary/access authentication providing access to the 3GPP system.
A careful analysis is required on effects of potential security compromise of AKMA authentication on 3GPP primary authentication and vice-versa.
5.4.2	Security Threats
Without a proper security design, compromise on AKMA authentication can jeopardize security on 3GPP side.
5.4.3	Potential security requirements
The system shall support a secure authentication framework to allow only legitimate UEs to use AKMA services.
The system shall prevent a potential security compromise of AKMA authentication from propagating to the 3GPP primary authentication and NAS/AS security.
Editor's Note: The above requirements are non-exhaustive and could evolve during the study.
[bookmark: _Toc530180917]5.5	Key Issue #5: User privacy
[bookmark: _Toc530180918]5.5.1 Issue details
The Subscription Permanent Identifier (SUPI) is considered sensitive information, since attackers may identify an individual subscriber through his/her permanent ID. Combined with other kinds of information, such as geographic location, an attacker may be able to trace a subscriber, or obtain access to further sensitive information. Thus, the Subscription Permanent Identifier needs to be protected.
Meanwhile, the SUPI being the basis for providing any service in 5G a network, must be known to the operator. This means that the operator is obliged to ensure that the SUPI is not revealed to any other parties.
When an operator wants to provide authentication and key management to an application server, it must have the ability to exchange information about a subscriber to enable the application server to determine the identity of its user. Hence, there is a need for another kind of identifier (permanent and/or temporarily) to identify users between the 3GPP network and an application server. And the MNO should be able to map the other kind of identifier to the permanent identifier of the MNO domain.
[bookmark: _Toc530180919]5.5.2 Security Threats
The Subscription Permanent Identifier may be leaked to unauthorized parties.
The application server may be unable to identify the user.
The operator may be unable to identify the users SUPI based on the new identifier between 3GPP network and application server.
[bookmark: _Toc530180920]5.5.3 Potential security requirements
SUPI shall not be revealed to application servers.
The system shall allow privacy protection of the SUPI when exchanged between the UE and the network for the purposes of AKMA services.
The 3GPP network shall be able to recover the SUPI based on an alternative identifier used between 3GPP network and application server.
[bookmark: _Toc530180921]5.6 Key Issue #6: secure communication between UE and application server
[bookmark: _Toc530180922]5.6.1 Issue details
In current BEST[3] and GBA[2] solutions, 3GPP network is responsible to derive Keys(e.g. KE2Menc, KE2Mint , Ks_(int/ext)_NAF) for UE and application server derived from the root subscriber authentication key K. However, the application server may not want to use this key, which is derived from the 3GPP network authentication key K. They may have a policy, which requires they use their own independently generated key (e.g. application specific key), but still require the use of features provided by the 3GPP network to distribute such a key. The mechanism can satisfy the demand of application providers who do not wish to establish the secure connection by using only a 3GPP credential.
In some scenarios, such as when the UE sends sensitive data to application server, the application security policy may require that the 3GPP network operator does not have accesses to that information. In addition, the services provided by the application server may be accessed by multiple applications. Therefore, it is desirable that a solution that addresses this key issue supports establishment of separate application specific keys for each application that are served by the application server.
[bookmark: _Toc530180923]5.6.2 Security threats
3GPP network may get access to sensitive data transferred between UE and applications which is protected by the key derived from 3GPP network, or from 3GPP network and a pre-shared key (i.e., non-3GPP credential) if the pre-shared key gets compromised.
[bookmark: _Toc530180924]5.6.3 Potential security requirements
TBD
5.7	Key Issue #7: Protecting subscriber's personal information in control and data traffic
5.7.1	Issue details
This key issue is about potential personal information contained in various control and data traffic messages.
If AKMA architecture uses some form of content in control and or data traffic which is privacy sensitive, those content need to be protected against attacks.
By attacks, it is meant that unauthorized entities attempt to identify subscriptions by getting hold of the privacy sensitive content in one or more protocol messages.
5.7.2	Security Threats
Unprotected privacy sensitive content in control and or data traffic make it easier for attackers to potentially identify subscribers.
5.7.3	Potential security requirements
The system shall support protecting the privacy sensitive content in control and data traffic used in the AKMA architecture.
Editor's Note: It is FFS which AKMA interfaces are required to protected privacy sensitive content.
5.8	Key Issue #8: Protection of AKMA architecture interfaces
5.8.1	Issue details
The interfaces utilized by the AKMA architecture between the 5G system and the 3GPP services and application functions (commonly called AKMA AF) are supposed to transfer key material and and therefore needs to be properly evaluated.
5.8.2	Security Threats
In case the interfaces used by AKMA architecture lack confidentiality, integrity and replay protection between authenticated endpoints it will be possible for an attacker to eavesdrop, alter data unnoticed and replay packets.
5.8.3	Potential security requirements
The interfaces utilized by the AKMA architecture between the 5G system and the 3GPP services and application functions shall support confidentiality, integrity and replay protection between authenticated endpoints.
5.9	Key Issue #9: Key separation for AKMA AFs
5.9.1	Issue details
In a scenario where the 5G system provides cryptographic keys to AKMA Application Functions (either 3GPP services or third party applications), it is important to have key separation. In the sense that two separate AKMA AFs never utilize the same key.
5.9.2	Security Threats
If there is no key separation it can lead to a situation where one AKMA AF can decrypt traffic intended for another AKMA AF.
It would also allow the possibility for an actor to inject malicious packages which the UE would conclude as cryptographically correct.
5.9.3	Potential security requirements
The AKMA architecture shall support key separation for different AKMA AFs.
[bookmark: _Toc515001711][bookmark: _Toc515009888]5.10	Key Issue #10: Compliance with local rules and regulations
5.10.1	Issue details
In different parts of the world, different rules and regulations apply with respect to the usage of cryptography. A service like AKMA that is intended to be deployed in many places around the globe should therefore be adaptable to the local situation.
In the case of AKMA, the operator is the facilitator of a service that can be used to agree a key between two parties which may not be under control of the operator. As such, operators in different parts of the world may be subject to some regulations with respect to providing key material to third parties.
Another potential use case of AKMA is that the operator facilitates end-to-end protection between a UE and a party outside of the operator domain. Also in such cases, restrictions may be enforced by the regulators.
In order to enhance adoption of the service, AKMA needs to be made regulations aware such that the service can be used irrespective of where the UE resides.
5.10.2	Security Threats
There are no threats.
5.10.3	Potential security requirements
AKMA service shall be made such that it can comply with rules and regulations of the serving network;
AKMA service shall be able to signal if services are not available under the regulations of the serving network
[bookmark: _Toc530180925]5.11	Key Issue #11: Generic battery efficient end-to-end security
[bookmark: _Toc530180926]5.11.1	Issue details
In case of a battery constrained UE that communicate to a 3rd party Application Server, it may be needed to enable end-to-end security (i.e. between UE and Application Server) that is battery efficient.
[bookmark: _Toc530180927]5.11.2	Security threats
Not applicable.
[bookmark: _Toc530180928]5.11.3	Potential security requirements
The solution shall support UEs that are battery constrained.
[bookmark: _Toc530180929]5.12	Key Issue #12: Key lifetimes
[bookmark: _Toc530180930]5.12.1 Issue details
For GBA, specified in [2], lifetimes are defined for the anchor key (Ks) and the derived sub-keys (Ks_(ext/int) NAF). The maximum lifetime for a sub-key is equal to the lifetime of the anchor key.
Introducing a lifetime for anchor keys and derived sub-keys could be reasonable for AKMA as well.
5.12.2 Security Threats
If the anchor key and the derived sub-keys do not have a lifetime, an attacker may use compromised keys for a long time.
5.12.3 Potential security requirements
Both anchor keys and derived sub-keys shall be provided with a maximum lifetime.
The lifetime of the derived sub-keys shall not exceed the lifetime of the anchor key.
Either end on AKMA interfaces shall allow for renegotiation of keys when key lifetime is expired
5.13	Key Issue #13: API for AKMA keys in UE
Editors Note: This key issue needs to be revised to focus on the potential changes needed to the UICC – ME interface to support AKMA functions within the UE
5.13.1	Issue details
In GBA, the Network Application Function (NAF) has an interface, Zn, towards the Bootstrapping Server Function (BSF) as is shown in Key Issue 1. The NAF can request NAF specific keys from the BSF over the Zn. Similar interface is also expected to be defined between the AKMA application function (AF) and the AKMA security anchor. The benefit of having such standardized network interface is self-evident as it provides multivendor interoperability, i.e. it enables AFs from different vendors and application developers to request AKMA keys from the security anchor.
The ultimate purpose of the AKMA feature is to provide keys, which are used to secure application communication between an AF and an application running in the UE (called AKMA app). It is assumed that there will be a counterpart of the AKMA security anchor in the UE side (called AKMA bootstrapping client). See figure 5.13.1-1.

Figure 5.13.1-1: API within UE for fetching AKMA keys
While the AFs in the network side will have a standardised interface for fetching AKMA keys, as described above, such interface or API is missing in the UE side. This means that application developers would need to design, perhaps considerably, different versions of their AKMA apps depending on how AKMA keys are made available in different types of UEs. This could be an obstacle in adopting the use of AKMA keys for applications. Such API was not developed for GBA, but recommendations in this problem space were recorded in TR 33.905 [5]. Considerations in TR 33.905 could be useful to investigate in relation to this Key Issue.
Traditionally, 3GPP has not specified interfaces within the UE, except for the interface between the ME and UICC, which is a multivendor interface. Similarly, the interface between the AKMA bootstrapping client and AKMA apps could be seen as a multivendor interface as the developers of AKMA apps are assumed to be different from ME vendors.
Having such standardised API for requesting AKMA keys in the UE would mean less design effort for application developers as it would introduce multivendor interoperability also in the UE side. Thereby making AKMA more attractive for applications to use AKMA.
Solutions to this Key Issue should study the following aspects:
-	How an API between an AKMA bootstrapping client and AKMA app could look like?
-	What parameters are sent between the AKMA bootstrapping client and AKMA app?
-	If and how does the AKMA bootstrapping client ensure that only authorized AKMA apps receive keys?
-	If and how could considerations in TR 33.905 be useful in relation to this Key Issue?
5.13.2	Security Threats
Not applicable.
5.13.3	Potential security requirements
Not applicable.
[bookmark: _Toc530180931]6 Candidate Solutions
[bookmark: _Toc515001712][bookmark: _Toc515009889][bookmark: _Toc530180932][bookmark: _GoBack]6.1 Solution #1: Introducing third party key to AKMA
[bookmark: _Toc530180933]6.1.1 Introduction
The secure transferring between the UE and the 3rd party not only requires secure connection, but to some extent protects data from leakage to untrusted parties even including MNOs, especially for some large CIoT corporations. Current GBA solution provides secure connection for the application providers based on 3GPP credentials, however, it lacks mechanism to ensure end to end security. Therefore, introducing a third party key to AKMA is an optional ability provided by 3GPP networks to protect data from UE all the way to the application server. The 3rd party key is defined as a secret key shared by the application server and the UE for application level communication. According to 3rd party service security requirements, whenever necessary to application providers, they can choose to use derived keys from 3GPP credentials and 3rd party keys to secure the end to end connection. In this way, application providers are able to control over the key material specifically.

[bookmark: _Toc530180934]6.1.2 Solution details
The proposed solution takes the current GBA procedure for example (Note: The related network elements and procedures in AKMA is FFS, the following figure only illustrates the 3rd party key involving procedure). During the procedure using bootstrapped security association, after NAF fetches Ks_(ext/int)_NAF from BSF, if necessary, the 3rd party executes end to end key derivation and sends to UE an e2e flag indicating the use of combination key scheme. According to the e2e flag, the UE derives the end to end key which is used for the following secure connection between UE and 3rd party.

Editor’s Note: It’s FFS that the 3rd party mentioned above could be key management service provider or application provider.

The e2e_key is derived according to:
	e2e _key = KDF (Ks_(ext/int)_NAF, Ka);
where Ka is the 3rd party key defined in 6.X.1.

Editor’s Note: The derivation algorithm is FFS.
[bookmark: _Toc530180935]6.2	Solution #2: Access independent architecture solution for AKMA
[bookmark: _Toc530180936]6.2.1	Introduction
This solution addresses KI#1, KI#2 and KI#4.
[bookmark: _Toc530180937]6.2.2	Solution details
[bookmark: _Toc530180938]6.2.2.1	Architecture and reference points
The AKMA architecture includes two new Network Functions:
· The AKMA Authentication Function (AAuF), and
· The AKMA Application Function (AApF).
The AAuF is the authentication anchor that provides UE authentication services using the AKA credentials. The AAUF is responsible for authenticating the UE, generating the key material to be used between the UE and the AAPF and maintaining a UE AKMA context to be used for subsequent bootstrapping requests and hence possibly avoiding a full re-authentication run. This solution does not currently take any stand on how the AAuF is realized, i.e. whether by a standalone NF or by the AUSF.
The AAuF interacts with the UE over the a1 reference point. The AAuF interacts with the AUSF and the AApF using Service-Based Interfaces.
The AApF is the function that benefits from the AAuF authentication services. The AApF interacts with the UE over the a2 reference point and whenever needed requests keying material from the AAuF via Service-Based Interfaces.
Figure 6.2.2.1-1 below illustrates the proposed architecture

Figure 6.2.2.1-1: AKMA reference architecture
[bookmark: _Toc530180939]6.2.2.2	Procedures
[bookmark: _Toc530180940]6.2.2.2.1	Initiation
In order to be able to secure the communication using AKMA, the UE and the AApF must first agree on its use. The procedure for negotiating the use of AKMA is given in Figure 6.2.2.2.1-1. The procedure is initiated by the UE sending a Request message not including any AKMA parameters and concluded by the AAuF sending an AKMA authentication required message. This is based on the GBA initiation procedure described in cl 4.5.1 of TS 33.220 [2].

Figure 6.2.2.2.1-1: Initiation procedure
[bookmark: _Toc530180941]6.2.2.2.2	Authentication
The authentication procedure assumes the support of the EAP framework as specified in RFC 3748 [4] such that:
· The UE takes the role of the peer,
· The AAuF takes the role of a pass-through authenticator, and
· The AUSF takes the role of the backend authentication server.
The authentication procedure is initiated by the UE sending a Request message to the AAuF. Following the UE request the AAuF triggers the EAP authentication procedure by sending an AKMA authentication request to the AUSF. The AUSF and the UE would then engage in an exchange of EAP messages that is concluded by the AUSF sending an AKMA authentication response message to the AAuF carrying either an EAP success or an EAP failure. In case of success, the message includes as well the AKMA anchor key KAKMA. The AAuF forwards the EAP result message to the UE and in case of success includes the necessary AKMA parameters such as a temporary identifier and a validity time. The temporary identifier is used by the UE for subsequent Requests towards AApFs as long as the validity period has not elapsed.

Figure 6.2.2.2.2-1: Authentication procedure
[bookmark: _Toc530180942]6.2.2.2.3	Usage
Once the UE has been successfully authenticated by the AAuF, the UE has the necessary keying material to establish secure communication with any AApF. In order to do that, the UE derives the application key KAF using the AApF identifier (FQDN) and possibly other parameters and supplies its temporary identifier to the AApF. The AApF then retrieves the the application key from the AAuF.

Figure 6.2.2.2.3-1: Usage procedure
[bookmark: _Toc530180943]6.2.3	Evaluation
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180944]6.3	Solution #3: Architecture solution for AKMA with standalone anchor
[bookmark: _Toc530180945]6.3.1	Introduction
This solution addresses KI#1, KI#2 and KI#4.
[bookmark: _Toc530180946]6.3.2	Solution details
[bookmark: _Toc530180947]6.3.2.1	Architecture and reference points
The AKMA architecture includes two new Network Functions:
· The AKMA Authentication Function (AAuF), and
· The AKMA Application Function (AApF).
The AAuF is the authentication anchor that provides UE authentication services. The AAuF is responsible for authenticating the UE, generating the key material to be used between the UE and the AApF and maintaining a UE AKMA context to be used for subsequent bootstrapping requests and hence possibly avoiding a full re-authentication run.
The AAuF interacts with the UE over the a1 reference point. The AAuF interacts with the UDM/ARPF and the AApF using Service-Based Interfaces.
The AApF is the function that benefits from the AAuF authentication services. The AApF interacts with the UE over the a2 reference point and whenever needed requests keying material from the AAuF via Service-Based Interfaces.
Figure 6.3.2.1-1 below illustrates the proposed architecture

Figure 6.3.2.1-1: AKMA reference architecture

[bookmark: _Toc530180948]6.3.2.2	Procedures
[bookmark: _Toc530180949]6.3.2.2.1	Initiation
In order to be able to secure the communication using AKMA, the UE and the AApF must first agree on its use. The procedure for negotiating the use of AKMA is given in Figure 6.3.2.2.1-1. The procedure is initiated by the UE sending a Request message not including any AKMA parameters and concluded by the AAuF sending an AKMA authentication required message. This is based on the GBA initiation procedure described in cl 4.5.1 of TS 33.220 [2].

Figure 6.3.2.2.1-1: Initiation procedure
[bookmark: _Toc530180950]6.3.2.2.2	Authentication
The authentication procedure assumes the support of the EAP framework as specified in RFC 3748 [4] such that:
· The UE takes the role of the peer,
· The AAuF takes the role of EAP authentication server

Figure 6.3.2.2.2-1: Authentication procedure
The authentication procedure is initiated by the UE sending a Request message to the AAuF.
Following the UE request the AAuF requests AV from the UDM/ARPF.
AAuF triggers the EAP authentication procedure by sending an EAP request to the UE. The AAuF and the UE would then engage in an exchange of EAP messages that is concluded by the AAuF sending an AKMA authentication response message to the AAuF carrying either an EAP success or an EAP failure. In case of success, the AAuF derives the AKMA anchor key KAKMA.
The AAuF forwards the EAP result message to the UE and in case of success includes the necessary AKMA parameters such as a temporary identifier and a validity time. The temporary identifier is used by the UE for subsequent Requests towards AApFs as long as the validity period has not elapsed.
[bookmark: _Toc530180951]6.3.2.2.3	Usage
Once the UE has been successefully authenticated by the AAuF, the UE has the necessary keying material to establish secure communication with any AApF. In order to do that, the UE derives the application key KAF using the AApF identifier (FQDN) and possibly other parameters and supplies its temporary identifier to the AApF. The AApF then retrieves the the application key from the AAuF.

Figure 6.3.2.2.3-1: Usage procedure
[bookmark: _Toc530180952]6.3.3	Evaluation
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180953]6.4	Solution #4: Bootstrapping authentication of AKMA
6.4.1 Introduction
This solution addresses key issue #3: Mutual authenticate between UE and anchor function.
The key issue proposes that the UE and the anchor function shall be able to mutually authenticate each other based on 5G credentials using the 5G authentication framework, i.e., 5G AKA and EAP-AKA'. In addition, during the authentication between UE and anchor function, a shared key Ks between UE and anchor function is derived. It is assumed that the anchor function is connected to the AUSF.
[bookmark: _Toc530180954]6.4.2 Security details
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see Figure 6.4.1). The authentication frameworks 5G AKA and EAP-AKA' in TS 33.501 are leveraged.
[bookmark: _Toc525311080][bookmark: _Toc530180955]6.4.2.1 Authentication procedure for 5G AKA

Figure 6.4.1: The bootstrapping authentication procedure for 5G AKA

Editor’s Note: How the anchor function key is derived, what it is bound to (e.g. node, identity, nothing etc.) and the key hierarchy are FFS.
The authentication procedure for 5G AKA works as follows, cf. also Figure 6.4.1:
1.	The UE sends a request towards the Anchor Function.
2. 	The Anchor Function shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, in which the user identity and Anchor Function identifier shall be included.
3.	The AUSF shall send a Nudm_UEAuthentication_Get Request to the UDM.
4.	The UDM/ARPF shall create a 5G HE AV from RAND, AUTN, XRES*, and KAUSF. The UDM shall then return the 5G HE AV to the AUSF.
5.	The AUSF shall store the XRES* temporarily. The AUSF shall compute the HXRES* from XRES* and KAnchor Function from KAUSF. The AUSF shall then generate the 5G AV from the 5G HE AV received from the UDM/ARPF by replacing the XRES* with the HXRES* and KAUSF with KAnchor Function in the 5G HE AV.
6.	The AUSF shall return the 5G SE AV (RAND, AUTN, HXRES*) to the SEAF.
7.	The SEAF shall send RAND, AUTN to the UE.
8.	At receipt of the RAND and AUTN, the USIM shall verify AUTN and compute a response RES. The ME then shall compute RES* from RES. The ME shall calculate KAUSF from CK||IK and KAnchor Function from KAUSF.
9.	The UE shall return RES* to the Anchor Function.
10.	The Anchor Function shall then compute HRES* from RES*, and the Anchor Function shall compare HRES* and HXRES*. If they coincide, the SEAF shall consider the authentication successful from the Anchor Function point of view.
11.	The Anchor Function shall send RES* as received from the UE to the AUSF.
12.	When the AUSF receives the RES*, it shall compare the received RES* with the stored XRES*. If the RES* and XRES* are equal, the AUSF shall consider the authentication as successful.
13.	The AUSF shall indicate to the Anchor Function whether the authentication was successful or not from the home network point of view. If the authentication was successful, the KAnchor Function shall be sent to the Anchor Function in the Nausf_UEAuthentication_Authenticate Response.
14.	The Anchor Function generates key material Ks= KAnchor Function.
15.	The Anchor Function shall send a response message to the UE to indicate the success of the authentication.
16.	The UE generates key material Ks= KAnchor Function.

[bookmark: _Toc530180956]6.4.2.2 Authentication procedure for EAP-AKA'

Figure 6.4.2: The bootstrapping authentication procedure for EAP-AKA'

Editor’s Note: How the anchor function key is derived, what it is bound to (e.g. node, identity, nothing etc.) and the key hierarchy are FFS.
The authentication procedure for EAP-AKA' works as follows, cf. also Figure 6.4.2:
1.	The UE sends a request towards the Anchor Function.
2. 	The Anchor Function shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, in which the user identity and Anchor Function identifier shall be included.
3.	The AUSF shall send a Nudm_UEAuthentication_Get Request to the UDM.
4.	The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF.
5.	The AUSF shall send the EAP-Request/AKA'-Challenge message to the SEAF.
6.	The SEAF shall transparently forward the EAP-Request/AKA'-Challenge message to the UE.
7.	At receipt of the RAND and AUTN, the USIM shall verify AUTN and compute a response RES. The ME shall derive CK' and IK'.
8.	The UE shall send the EAP-Response/AKA'-Challenge message to the Anchor Function.
9.	The Anchor Function shall transparently forwards the EAP-Response/AKA'-Challenge message to the AUSF.
10.	The AUSF shall verify the message, and if the AUSF has successfully verified this message it shall continue as follows, otherwise it shall return an error.
11.	The AUSF derives EMSK from CK’ and IK’. The AUSF uses the first 256 bits of EMSK as the KAUSF and then calculates KAnchor Function from KAUSF. The AUSF shall send an EAP Success message to the SEAF inside Nausf_UEAuthentication_Authenticate Response, which shall forward it transparently to the UE. Nausf_UEAuthentication_Authenticate Response message contains the KAnchor Function.
12.	The Anchor Function generates key material Ks= KAnchor Function.
13.	The Anchor Function shall send the EAP Success message to the UE.
14.	The UE generates key material Ks= KAnchor Function.
[bookmark: _Toc463451395][bookmark: _Toc467572754][bookmark: _Toc467857560][bookmark: _Toc530180957]6.4.3 Evaluation
TBA.
[bookmark: _Toc530180958]6.5 Solution #5: Transport independent procedure using existing protocols by applying OneM2M protocol binding mechanism
[bookmark: _Toc530180959]6.5.1 Introduction
OneM2M is a global standard organization aimed at developing the technical specification of global service platform for IoT. It develops technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide. OneM2M has defined the exchanging message protocol between the entities (oneM2M Primitive), oneM2M core protocol to handle errors and bindings between core protocol and application layer transport protocol (CoAP, HTTP, MQTT). The protocol binding is when one or more than one interfaces are combined with other protocols, which is focused on message translation between oneM2M's request/response and binding target protocol's message.
[bookmark: _Toc530180960]6.5.2 Solution details	
With reference to oneM2M protocol specifications [2], primitives are common service layer messages exchanged over the reference points in oneM2M architecture. In case of using an IP-based Underlying Network as illustrated in Figure 6.X.1, the primitives are mapped to application layer communication protocols such as HTTP, CoAP or MQTT which use TCP or UDP on the transport layer. The specification of primitives is independent of underlying communication protocols and allows introduction of bindings to other communication protocols.

Figure 6.5.1: Communication model using OneM2M protocol binding
By applying protocol binding mechanism to AKMA, UE and AKMA functions interact with each other through OneM2M primitives. Each CRUD+N （CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY ）operation defined in OneM2M protocol consisting of request and response primitives, is to be mapped to CoAP methods or MQTT payload. As illustrated in Figure 6.X.1 (UE and AKMA functions can be both originators or receivers depending on interaction direction, the figure depicts UE sending requests to AKMA functions as an example), while UE sends requests to AKMA functions, it implements the binding function to map request messages to specific MQTT or CoAP messages for transferring. Upon receiving MQTT or CoAP messages, AKMA functions unbind the messages from specific transport protocol and execute the subsequent actions.
Editor’s Note: It is FFS how these application layer protocols interwork with the proposed AKMA architecture, for e.g. to obtain keys, derive session specific keys etc.
[bookmark: _Toc530180961]6.5.3 Evaluation
This solution fulfils the requirement of transport independent procedure using existing protocols, thereby satisfying key issue #2.
[bookmark: _Toc530180962]6.6 Solution #6: Transport independent procedure using existing protocols by introducing a protocol transfer gateway
[bookmark: _Toc530180963]6.6.1 Introduction
To keep AKMA features applying for as many types of IoT devices as possible, a protocol transfer gateway/proxy can be introduced aiming at converting messages and communicating with terminals using different protocols.
[bookmark: _Toc530180964]6.6.2 Solution details	
Assuming AKMA functions are HTTP based, when AKMA procedure is implemented between the UE and AKMA functions, the protocol transfer gateway converts and translates messages from UE to targeted HTTP messages. In case of adding more IoT terminals based on different protocol, only the gateway is required to be upgraded. The implementation of the gateway is not limited at this step of study.
Editor’s Note: It’s FFS to define AKMA functions and their attributes in terms of architecture and interfaces

Figure 6.6.1 Protocol Transfer Gateway Model
Editor’s Note: It is FFS how these application layer protocols interwork with the proposed AKMA architecture, for e.g. to obtain keys, derive session specific keys etc..
[bookmark: _Toc530180965]6.6.3 Evaluation
This solution fulfils the requirement of transport independent procedure using existing protocols, thereby satisfying key issue #2.
[bookmark: _Toc530180966]6.7 Solution #7: UE implementation scheme- AKMA framework and application on modem
[bookmark: _Toc530180967]6.7.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions. In this scheme, the AKMA logic module which is named as AKMA framework in the following details is implemented on modem, with applications utilizing AKMA capabilities running on modem as well.
[bookmark: _Toc530180968]6.7.2 Solution details	
Figure 6.7.1 illustrates a UE implementation scheme that both AKMA framework and application are on modem. AKA module is running on UICC to receive AUTN and RAND as input from ME and return RES and CK/IK as output. AKMA framework is able to derive session keys and subsequent application keys based on CK and IK obtained from AKA module. Applications on modem interfaces with AKMA framework to obtain an application authentication identifier. AKMA framework requests for CK and IK via APDU (Application Protocol Data Unit) packets according to ISO7816 [6] protocols. Besides, there could be other instructions, parameters like request/response, keys, identifiers, etc., transferred between AKMA framework and UICC.

Figure 6.7.1: UE implementation scheme-AKMA framework and application on modem
[bookmark: _Toc530180969]6.7.3 Evaluation	
This scheme is IoT applicable since it can be implemented without UE application processors, applications are running on modem to utilize AKMA capabilities directly.
[bookmark: _Toc530180970]6.8 Solution #8: UE implementation scheme- AKMA framework on UICC and application on modem
[bookmark: _Toc530180971]6.8.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions. In this scheme, the AKMA framework is on UICC, with applications utilizing AKMA capabilities running on modem.
[bookmark: _Toc530180972]6.8.2 Solution details	
Figure 6.8.1 illustrates a UE implementation scheme with AKMA framework on UICC and the applications on modem. Modem sends instructions and parameters to UICC via APDU (Application Protocol Data Unit) packets according to ISO7816 [6] protocols. In this case, the key derivations are UICC-based.

Figure 6.8.1: UE implementation scheme-AKMA framework on UICC and application on modem
[bookmark: _Toc530180973]6.8.3 Evaluation	
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180974]6.9 Solution #9: UE implementation scheme- Application Processor (AP) scheme with AKMA framework on modem
[bookmark: _Toc530180975]6.9.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions. In this scheme, AKMA framework is implemented on modem, with application processors (AP) implemented on UE to enable applications utilizing AKMA capabilities.
[bookmark: _Toc530180976]6.9.2 Solution details	
This solution is similar to the solution in section 6.X in terms of the interaction between AKMA framework and AKA module, while applications on application processor (AP) interfaces AKMA framework through AT commands specified in TS 27.007[7].
· Open logical channel +CCHO
· Close logical channel +CCHC
· Generic UICC logical channel access +CGLA
· Restricted UICC logical channel access +CRLA
However, since the implementation of the above commands is optional in the specification, this kind of scheme is lack of mandatory command implementation.

Figure 6.9.1: AP scheme with AKMA framework on modem
[bookmark: _Toc530180977]6.9.3 Evaluation	
Editor’s note: The evaluation of the solution is FFS.

[bookmark: _Toc530180978]6.10 Solution #10: UE implementation scheme- Application Processor (AP) scheme with AKMA framework on UICC
[bookmark: _Toc530180979]6.10.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions. In this scheme, AKMA framework is implemented on UICC, with application processors (AP) implemented on UE to enable applications utilizing AKMA capabilities.
[bookmark: _Toc530180980]6.10.2 Solution details	
This solution is similar to the solution in section 6.A in terms of the interaction between AKMA framework and AKA module, while application processor (AP) interfaces with AKMA framework through AT commands specified in TS 27.007[7]. As for AP interfacing AKMA framework via modem, there is the same issue due to AT command implementation introduced in section 6.9.

Figure 6.10.1: AP scheme with AKMA framework on UICC
[bookmark: _Toc530180981]6.10.3 Evaluation
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180982]6.11 Solution #11: UE implementation scheme- AKMA framework implemented on Secure Element (SE)
[bookmark: _Toc530180983]6.11.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions, which is implemented on a secure element in this scheme, with application processors implemented on UE to enable applications utilizing AKMA capabilities.
[bookmark: _Toc530180984]6.11.2 Solution details	
In this solution, it is assumed that some intelligent terminals are equipped with secure elements (SE). In this case illustrated in Figure 6.11.1, AKMA framework can be implemented on SE. The application processor inputs CK and IK obtained from UICC to AKMA framework, and afterwards gets application authentication identifier from SE.

Figure 6.11.1: UE implementation scheme-AKMA framework implemented on SE
[bookmark: _Toc530180985]6.11.3 Evaluation	
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180986]6.12 Solution #12: UE implementation scheme- AKMA framework implemented on application processor’s OS
[bookmark: _Toc530180987]6.12.1 Introduction
To enable authentication and application key management using AKMA, 3GPP AKA protocol can be leveraged to bootstrap application security. 3GPP AKA is running on UICC with CK and IK generated to be provided for session key derivation. An AKMA logic module should be implemented on UE to achieve AKMA procedures with network functions. In this scheme, the AKMA framework is implemented on the application processor’s operating system (OS) within the UE.
[bookmark: _Toc530180988]6.12.2 Solution details	
Figure 6.12.1 illustrates the UE implementation scheme where AKMA framework is implemented on the application processor’s operating system, the application authentication identifier is provided to upper layer applications via direct internal system calling.

Figure 6.12.1: AKMA framework implemented on application processor’s OS
[bookmark: _Toc530180989]6.12.3 Evaluation	
Editor’s note: The evaluation of the solution is FFS.
[bookmark: _Toc530180990]6.X Solution <X>: <Solution Name>
[bookmark: _Toc515001713][bookmark: _Toc515009890][bookmark: _Toc530180991]6.x.1 Introduction
[bookmark: _Toc515001714][bookmark: _Toc515009891][bookmark: _Toc530180992]6.x.2 Solution details
[bookmark: _Toc515001715][bookmark: _Toc515009892][bookmark: _Toc530180993]6.x.3 Evaluation
[bookmark: _Toc515001716][bookmark: _Toc515009893][bookmark: _Toc530180994]7. Evaluation and conclusion

[bookmark: _Toc515001717][bookmark: _Toc515009894][bookmark: _Toc530180995]
Annex <A>:
<Annex title>
[bookmark: _Toc515001718][bookmark: _Toc515009895][bookmark: _Toc530180996]A.1	<Subtitle>
[bookmark: historyclause]

[bookmark: _Toc515001719][bookmark: _Toc515009896][bookmark: _Toc530180997]Annex <X>:
Change history
[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK22]
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018.5
	91-bis
	S3-181813
	
	
	
	TR skeleton
	0.0.1

	2018.5
	91-bis
	S3-182077
	
	
	
	Scope is revised based on S3-182054
	0.1.0

	2018.9
	92-bis
	S3-183157
	
	
	
	Updated based on S3-183154, S3-183155, S3-183156, S3-183006, S3-183158, S3-183159, S3-183160, S3-183161, S3-183162, S3-183163
	0.2.0

	2018.11
	93
	S3-183735
	
	
	
	Updated based on S3-183533, S3-183734, S3-183750, S3-183751, S3-183736, S3-183737, S3-183747, S3-183748, S3-183749
	0.2.0

3GPP
image3.emf
HSS

BSF

UE

NAF

Zh

Ub Ua

GBA GAA

HSS
BSF
UE
NAF
Zh
Zn
Ub
Ua
GBA
GAA

image4.emf
UE

AKMA

AF

5GC

UDM

AUSF

SEAF

?

?

?

?

?

?

UE
AKMA AF

5GC
UDM
AUSF
SEAF
?
?
?
?
?
?

image5.emf
AKMA AF

5GC

AKMA security

anchor

AKMA app

UICC

Fetch keys

UE

Bootstrapping

Communication

protected with

AKMA keys

API for

fetching keys?

AKMA

bootstrapping

client

Microsoft_Visio_Drawing111.vsdx

AKMA AF

5GC
AKMA security anchor
AKMA app
UICC
Fetch keys
UE
Bootstrapping
Communication protected with AKMA keys
API for fetching keys?
AKMA bootstrapping client

image6.emf
UE

Evolved NAF

function

(3rd party)

Evolved BSF

function(MNO)

B-TID,Ks,Ka B-TID,Ks,Prof

Key derivation Ks->Ks_

（ ext/int)_NAF

according to flag

setting

1. Application Request

(B-TID,msg)

2. Authentication Request

(B-TID,NAF-Id)

3. Authentication Answer

(Ks_(ext/int)_NAF, Prof,

bootstrap time,

key lifetime)

The server stores

Ks_(ext/int)_NAF,

bootstrap time Prof and

key lifetime

4. Application answer

(e2e flag)

End to end key

derivation; stores

e2e_key

End to end key

derivation according to

e2e flag

msg is appl.specific dataset

Profis application specific part of user profile

oleObject3.bin
UE

Evolved BSF function(MNO)

B-TID,Ks,Ka

Evolved NAF function
(3rd party)

B-TID,Ks,Prof

Key derivation Ks->Ks_（ext/int)_NAF according to flag setting

1. Application Request
(B-TID,msg)

2. Authentication Request
(B-TID,NAF-Id)

3. Authentication Answer
(Ks_(ext/int)_NAF, Prof,
bootstrap time,
 key lifetime)

The server stores Ks_(ext/int)_NAF, bootstrap time Prof and key lifetime

4. Application answer
(e2e flag)

End to end key derivation; stores e2e_key

End to end key derivation according to e2e flag

msg is appl.specific dataset
Prof is application specific part of user profile

image7.emf
UE

AApF

5GC

UDM

AUSF

SEAF

AAuF

a2

SBI

UE
AApF

5GC
UDM
AUSF
SEAF
AAuF
a1
a2
SBI

image8.emf
UE AApF

Request

Authentication Required

UE
AApF
Request
Authentication Required

image9.emf
UE AAuF

Request (SUPI/SUCI)

AUSF

Authentication Request

(SUPI/SUCI)

EAP exchange

Authentication

Response(EAP Success/

Failure, [K

AKMA

])

Response([Temporary

identifier, validity time])

UE
AAuF
Request (SUPI/SUCI)
AUSF
Authentication Request (SUPI/SUCI)
EAP exchange
Authentication Response(EAP Success/Failure, [KAKMA])
Response([Temporary identifier, validity time])

image10.emf
UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, validity

time)

Response

UE
AApF
Request (Temporary identifier)
AAuF
Application Request (Temporary identifier, AApF identifier)
Authentication Response(KAF, validity time)
Response

image11.emf
UE

AApF

5GC

UDM

AUSF

SEAF

AAuF

a2

SBI

UE
AApF

5GC
UDM
AUSF
SEAF
AAuF
a1
a2
SBI

image12.emf
UE AApF

Request

Authentication Required

UE
AApF
Request
Authentication Required

image13.emf
UE AAuF

Request (SUPI/SUCI)

UDM/

ARPF

Nudm_UEAuthentication_Get

Request

(SUCI or SUPI)

Nudm_UEAuthentication_

Get Response

(EAP-AKA´ AV [, SUPI])

Response(EAP success

[Temporary identifier,

validity time])

UE
AAuF
Request (SUPI/SUCI)
UDM/ARPF
Nudm_UEAuthentication_Get Request
(SUCI or SUPI)
EAP exchange
Nudm_UEAuthentication_
Get Response
(EAP-AKA´ AV [, SUPI])
Response(EAP success [Temporary identifier, validity time])

image14.emf
UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, validity

time)

Response

UE
AApF
Request (Temporary identifier)
AAuF
Application Request (Temporary identifier, AApF identifier)
Authentication Response(KAF, validity time)
Response

image15.emf
UE

Anchor

Function

AUSF UDM/ARPF

7. Authentication Request (RAND,

AUTN)

4. Nudm_UEAuthentication_

Get Response

(5G HE AV=RAND, AUTN,

XRES*, and K

AUSF

)

8. Verity AUTN, compute RES,

RES*

9. Authentication Response (RES*)

10. Calculate HRES* and

compare to HXRES*

15. Response

[B-TID, key lifetime]

1. Request (user identity)

2. Nausf_UEAuthentication_

Authenticate Request

(user identity, Anchor Function

identifier)

3. Nudm_UEAuthentication_

Get Request

 (user identity, Anchor Function

identifier)

14. Ks=K

Anchor Function

5. Store XRES*, Calculate

HXRES*

12. RES* Verification

16. Ks=K

Anchor Function

UE
Anchor Function
AUSF
UDM/ARPF
7. Authentication Request (RAND, AUTN)
4. Nudm_UEAuthentication_
Get Response
(5G HE AV=RAND, AUTN, XRES*, and KAUSF)
6. Nausf_UEAuthentication_Authenticate Response (5G AV=RAND, AUTN, HXRES*)
8. Verity AUTN, compute RES, RES*
9. Authentication Response (RES*)
10. Calculate HRES* and compare to HXRES*
15. Response
[B-TID, key lifetime]
1. Request (user identity)
2. Nausf_UEAuthentication_
Authenticate Request
(user identity, Anchor Function identifier)
3. Nudm_UEAuthentication_
Get Request
 (user identity, Anchor Function identifier)
14. Ks=KAnchor Function
5. Store XRES*, Calculate HXRES*
11. Nausf_UEAuthentication_Authenticate Request (RES*)
12. RES* Verification
13. Nausf_UEAuthentication_Authenticate Response (Result, KAnchor Function)
16. Ks=KAnchor Function

image16.emf
UE

 Anchor

Function

AUSF UDM/ARPF

6. EAP Request / AKA′-Challenge

(RAND, AUTN)

4. Nudm_UEAuthentication_

Get Response

(EAP-AKA′ AV=RAND, AUTN,

XRES, CK', IK')

5. EAP Request / AKA′-Challenge

(RAND, AUTN

)

7. Verity AUTN, compute

RES

8. EAP Response / AKA′-Challenge

(RES)

10. AUSF checks the

given RES, if it is correct.

13. Response (EAP Success, B-TID,

key lifetime]

1. Request (user identity)

2. Nausf_UEAuthentication_

Authenticate Request

(user identity, Anchor Function

identifier)

3. Nudm_UEAuthentication_

Get Request

 (user identity, Anchor Function

identifier)

12. Ks=K

Anchor Function

14. Ks=K

Anchor Function

9. Auth-Req (RES)

11. Auth-Resp. (EAP Success,

K

Anchor Function

)

UE
Anchor Function
AUSF
UDM/ARPF
6. EAP Request / AKA′-Challenge (RAND, AUTN)
4. Nudm_UEAuthentication_
Get Response
(EAP-AKA′ AV=RAND, AUTN, XRES, CK', IK')
5. EAP Request / AKA′-Challenge (RAND, AUTN)
7. Verity AUTN, compute RES
8. EAP Response / AKA′-Challenge (RES)
10. AUSF checks the given RES, if it is correct.
13. Response (EAP Success, B-TID, key lifetime]
1. Request (user identity)
2. Nausf_UEAuthentication_
Authenticate Request
(user identity, Anchor Function identifier)
3. Nudm_UEAuthentication_
Get Request
 (user identity, Anchor Function identifier)
12. Ks=KAnchor Function
14. Ks=KAnchor Function
9. Auth-Req (RES)
11. Auth-Resp. (EAP Success,
KAnchor Function)

image17.emf
Originator（ UE）

Binding Function

Request Response

Primitives

Application Layer Communication

protocol (e.g. HTTP, CoAP, MQTT,

WebSocket)

Transport Layer Protocol

(UDP/TCP)

Receiver (AKMA function)

Binding Function

Request Response

Primitives

Application Layer Communication

protocol (e.g. HTTP, CoAP, MQTT,

WebSocket)

Transport Layer Protocol

(UDP/TCP)

IP-based Underlying Network

oleObject14.bin
Originator（UE）

Binding Function

Request

Response

Primitives

Application Layer Communication protocol (e.g. HTTP, CoAP, MQTT, WebSocket)

Transport Layer Protocol
(UDP/TCP)

IP-based Underlying Network

Receiver (AKMA function)

Binding Function

Request

Response

Primitives

Application Layer Communication protocol (e.g. HTTP, CoAP, MQTT, WebSocket)

Transport Layer Protocol
(UDP/TCP)

image18.emf
Network Side

UE1

(MQTT)

UE2

(CoAP)

UE3

(Bluetooth

/ZigBee)

AKMA function

…

Any other

IoT devices

MQTT

CoAP

HTTP

AKMA Protocol transfer gateway

oleObject15.bin
Network Side

UE1
(MQTT)

UE2
(CoAP)

UE3
 (Bluetooth /ZigBee)

AKMA function

…

Any other IoT devices

MQTT

CoAP

HTTP

AKMA Protocol transfer gateway

image19.emf
AKMA

APP1

AKA UICC

modem

oleObject16.bin
AKA

UICC

AKMA

modem

APP1

image20.emf
AKA

UICC

AKMA

APP1

modem

oleObject17.bin
AKA

UICC

AKMA

modem

APP1

image21.emf
UICC

AKA

AKMA

APP1 APP2

OS

Kernel

Driver

AP

modem

oleObject18.bin
AKA

UICC

AKMA

modem

APP1

APP2

OS

Kernel

Driver

AP

image22.emf
UICC

AKA

AKMA

APP1 APP2

OS

Kernel

Driver

AP

modem

oleObject19.bin
AKA

UICC

AKMA

modem

APP1

APP2

OS

Kernel

Driver

AP

image23.emf
UICC

AKA

APP1 APP2

OS

Kernel

Driver

AP

AKMA

SE

modem

oleObject20.bin
AKA

UICC

AKMA

APP1

APP2

OS

Kernel

Driver

AP

SE

modem

image24.emf
UICC

APP1 APP2

OS

Kernel

Driver

AP

AKMA

AKA

modem

oleObject21.bin
AKMA

UICC

AKA

APP1

APP2

OS

Kernel

Driver

AP

modem

image1.jpeg
s

image2.png
=

A GLOBAL INITIATIVE

